Menentukan vektor resultan
03.11
Diposting oleh Melany Christy
MENENTUKAN VEKTOR RESULTAN DENGAN METODE GRAFIS
Dengan menggunakan metode segitiga dan poligon, kita dapat melukis vektor resultan dari dua buah vektor atau lebih. Dari gambar vektor resultan tersebut, kita dapat menentukan besar dan arah vektor resultan dengan melakukan pengukuran (bukan menghitung). Cara menentukan vektor resultan seperti ini disebut metode grafis. Sekarang, bagaimana menentukan vektor resultan dengan metode grafis ? di baca terus ya, hehe….
Langkah-langkah menentukan besar dan arah vektor resultan dengan metode grafis, adalah sebagai berikut :
- tetapkan sumbu X positif sebagai acuan menentukan arah. Ingat, sudut positif diukur dengan arah berlawanan arah jarum jam, sedangkan sudut negatif diukur dengan arah searah jarum jam.
- gambar setiap vektor yang akan dijumlahkan (lihat kembali menggambar penjumlahan vektor menggunakan jajaran genjang)
- Arah vektor digambar terhadap sumbu x positif dengan menggunakan busur derajat
Perkalian Titik dan Perkalian Silang
03.02
Diposting oleh Melany Christy
Misalnya terdapat dua vektor, yakni A dan B. Perkalian skalar dari vektor A dan B dinyatakan dengan A.B (karena digunakan notasi titik maka perkalian ini dinamakan perkalian titik). Perkalian vektor dari A dan B dinyatakan dengan A x B. Karena digunakan notasi x, maka perkalian ini disebut perkalian silang.
Perkalian titik
Misalnya diketahui vektor A dan B sebagaimana tampak pada gambar di bawah. Perkalian titik antara vektor A dan B dituliskan sebagai A.B (A titik B).
Untuk mendefinisikan perkalian titik dari vektor A dan B (A.B), digambarkan vektor A dan vektor B yang membentuk sudut teta (sambil lihat gambar di bawah). Selanjutnya kita gambarkan proyeksi dari vektor B terhadap arah vektor A. Proyeksi ini adalah komponen dari vektor B yang sejajar dengan vektor A, yang besarnya sama dengan B cos teta.
Dengan demikian, kita definisikan A.B sebagai besar vektor A yang dikalikan dengan komponen vektor B yang sejajar dengan A. Secara matematis dapat kita tulis sebagai berikut :
AB cos teta merupakan bilangan biasa (skalar). Karenanya perkalian titik disebut juga perkalian skalar. Bagaimana jika perkalian titik antara vektor A dan B dibalik menjadi B.A ? sebelum kita definisikan B.A, terlebih dahulu kita gambarkan proyeksi dari vektor A terhadap vektor B (lihat gambar di bawah).
Berdasarkan gambar ini, kita dapat mendefinisikan B.A sebagai besar vektor B yang dikalikan dengan komponen vektor A yang sejajar dengan B. Secara matematis dapat kita tulis sebagai berikut :
Hasil perkalian titik A.B = AB cos teta dan hasil perkalian titik B.A = BA cos teta. Karena AB cos teta = BA cos teta, maka berlaku A.B = B.A
Beberapa hal dalam perkalian titik yang perlu anda ketahui :
1. Perkalian titik memenuhi hukum komutatif
A.B = B.A
2. Perkalian titik memenuhi hukum distributif
A. (B + C) = A.B + A.C
3. Jika vektor A dan B saling tegak lurus, maka hasil perkalian titik A.B = 0
Ketika vektor A dan B saling tegak lurus, maka sudut yang dibentuk adalah 90o. Cos 90o = 0. Dengan demikian : A.B = AB cos teta = AB cos 90o = 0. Sebaliknya, B.A = BA cos teta = BA cos 90o = 0
4. Jika vektor A dan vektor B searah, maka A.B = AB cos 0o = AB
Ketika vektor A dan B searah, maka sudut yang dibentuk adalah 0o. Cos 0 = 1. Dengan demikian, A.B = AB cos teta = AB cos 0o = AB. Sebaliknya B.A = BA cos teta = BA cos 0o = BA
(Anda jangan bingung dengan AB dan BA. Besar AB = besar BA. Misalnya besar vektor A = 2. besar vektor B = 3. maka A.B = 2.3 = 6; ini sama saja dengan B.A = 3.2 = 6. dipahami perlahan-lahan ya…)
5. Syarat lain dari dua vektor yang searah, jika A = B maka diperoleh A.A = A2 atau B.B = B2
6. Jika vektor A dan B berlawanan arah (ketika dua vektor berlawanan arah maka sudut yang dibentuk adalah 180º), maka hasil perkalian A.B = AB cos 180º = AB (-1) = -AB.
Cos 180º = -1.
Contoh soal :
Sebuah vektor A memiliki besar 4 satuan dan vektor B memiliki 3 satuan. Tentukan hasil perkalian titik dari kedua vektor jika sudut yang dibentuk oleh kedua vektor adalah 60º, 90º dan 180o
Panduan jawaban :
Karena A.B = B.A maka kita bisa memilih menggunakan salah satu. Misalnya kita menggunakan A.B, dengan demikian kita tulis persamaannya
A.B = AB cos teta
Besar A = 4 satuan dan besar B = 3 satuan.
Soal latihan :
Dua vektor A dan B masing-masing besarnya 6 satuan dan 4 satuan. Tentukan perkalian titik antara kedua vektor jika sudut yang terbentuk adalah 30o, 60o, 90o, 120o, 150o, 180o
Perkalian silang
Perkalian silang dari dua vektor, misalnya vektor A dan B ditulis sebagai A x B (A silang B). Perkalian silang dikenal dengan julukan perkalian vektor, karena hasil perkalian ini menghasilkan besaran vektor.
Misalnya vektor A dan vektor B tampak seperti gambar di bawah.
Untuk mendefinisikan perkalian silang antara vektor A dan B (A x B), kita gambarkan vektor A dan B seperti gambar di atas, dan digambarkan juga komponen vektor B yang tegak lurus pada A (lihat gambar di bawah), yang besarnya sama dengan B sin teta
Dengan demikian, kita dapat mendefinisikan besar perkalian silang vektor A dan B (A x B) sebagai hasil kali besar vektor A dengan komponen vektor B yang tegak lurus pada vektor A.
Bagaimana jika A x B kita balik menjadi B x A ?
Terlebih dahulu kita gambarkan vektor B dan A serta komponen vektor A yang tegak lurus pada B (amati gambar di bawah…)
Berdasarkan gambar ini, kita dapat mendefinisikan perkalian silang antara vektor B dan A (B x A) sebagai hasil kali besar vektor B dengan komponen vektor A yang tegak lurus pada vektor B. Secara matematis ditulis :
Arah Perkalian Silang A x B
Perkalian silang adalah perkalian vektor, sehingga hasil perkaliannya memiliki besar dan arah. Besar hasil perkalian vektor telah kita turunkan di atas, sekarang kita menentukan arahnya. Untuk menentukan arah A x B, terlebih dahulu kita gambarkan vektor A dan B seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)
Kita definisikan perkalian silang A x B sebagai suatu vektor yang tegak lurus bidang di mana vektor A dan B berada. Besarnya sama dengan AB sin teta. Jika C = A x B maka C = AB sin teta
Arah C tegak lurus bidang di mana vektor A dan B berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya berlawanan dengan arah putaran jarum jam, maka arah C searah dengan arah ibu jari menuju ke atas.
Arah Perkalian Silang B x A
Untuk menentukan arah B x A, terlebih dahulu kita gambarkan vektor B dan A seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)
Jika C = B x A maka C = BA sin teta.
Arah C tegak lurus bidang di mana vektor B dan A berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya searah dengan arah putaran jarum jam, maka arah C sama dengan arah ibu jari menuju ke bawah.
A x B tidak sama dengan B x A. Hasil perkalian silang menghasilkan besaran vektor, di mana selain mempunyai besar, juga mempunyai arah. Pada penurunan di atas, arah A x B berlawanan arah dengan B x A.
Beberapa hal dalam perkalian silang yang perlu anda ketahui :
1. Perkalian silang bersifat anti komutatif.
A x B = – B x A
Tanda negatif menunjukkan bahwa arah B pada A x B berlawanan dengan arah B pada B x A.
2. Jika kedua vektor saling tegak lurus maka sudut yang dibentuk adalah 90o. Sin 90o = 1. Dengan demikian, besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut :
A x B = AB sin teta = AB sin 90o = AB
B x A = BA sin teta = BA sin 90o = BA
Ingat ya, ini adalah besar hasil perkalian silang.
3. Jika kedua vektor searah, maka sudut yang dibentuk adalah 0o. Namanya juga segaris…
Sin 0o = 0. Dengan demikian, nilai alias besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut.
A x B = AB sin teta = AB sin 0o = 0
B x A = BA sin teta = BA sin 0o = 0
Hasil perkalian silang antara dua vektor yang searah alias segaris kerja sama dengan n0L.
Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga
Sumber : http://www.gurumuda.com/perkalian-titik-dan-perkalian-silang/
Mengenal besaran vektor dan skalar
07.18
Diposting oleh Melany Christy
Bagaimana membedakan besaran skalar dan vektor ?
Jika saya mengatakan massa sebuah batu adalah 400 gram, pernyataan ini sudah cukup bagi anda untuk mengetahui semua hal tentang massa batu. Anda tidak membutuhkan arah untuk mengetahui massa batu. Demikian juga dengan besaran waktu, suhu, volume, massa jenis, usaha, kuat arus listrik, tekanan, daya dll.
Ada beberapa besaran fisika yang tidak dapat dinyatakan dengan nilai atau besarnya saja. Misalnya ketika saya mengatakan bahwa seorang anak berpindah sejauh 10 meter, maka pernyataan ini belum cukup. Anda mungkin bertanya, ia berpindah ke mana ? apakah ke arah utara, selatan, timur atau barat ? Demikian juga apabila anda mengatakan bahwa anda mendorong meja dengan gaya sebesar 100 N. Kemana arah dorongan anda ? nah, besaran yang demikian disebut besaran vektor, di mana memerlukan pernjelasan mengenai besar dan arahnya. Contoh besaran vektor adalah perpindahan, percepatan, impuls, momentum dll. Selengkapnya akan anda pelajari pada pokok bahasan yang berkaitan dengan besaran tersebut.
Bagaimana Menyatakan Suatu Vektor ?
Dalam fisika, akan selalu membantu jika digambarkan diagram mengenai suatu situasi tertentu, dan hal ini akan semakin berarti jika berhubungan dengan vektor. Pada diagram, setiap vektor dinyatakan dengan tanda panah. Tanda panah tersebut selalu digambarkan sedemikian rupa sehingga menunjuk ke arah yang merupakan arah vektor tersebut. Panjang tanda panah digambarkan sebanding dengan besar vektor.
Sebagai contoh, pada gambar di bawah dilukiskan suatu vektor gaya (F) yang besarnya 40 N (N = Newton, satuan gaya) dan berarah 30o utara dari timur atau 30o terhadap sumbu x positif. Besar vektor F = 40 N dilukiskan dengan panjang anak panah 4 cm. Ini berarti skala yang dipilih adalah 1 cm = 10 N atau 4 cm = 40 N.
Aturan Penulisan Vektor
Dalam menuliskan vektor, apabila anda menggunakan tulisan tangan, lambang suatu vektor umumnya ditulis dengan huruf besar dan di atasnya perlu ditambahkan tanda panah, misalnya :
Untuk buku cetak, lambang vektor ditulis dengan huruf besar yang dicetak tebal, misalnya F. Untuk besar vektor, apabila kita menggunakan tulisan tangan maka besar suatu vektor ditulis dengan tanda harga mutlak, misalnya :
Untuk buku cetak, besar vektor ditulis dengan huruf miring, misalnya F
Perkalian vektor dan skalar menggunakan komponen vektor satuan
07.11
Diposting oleh Melany Christy
Vektor satuan (unit vektor) merupakan suatu vektor yang besarnya = 1. vektor satuan tidak mempunyai satuan. Vektor satuan berfungsi untuk menunjukan suatu arah dalam ruang. Untuk membedakan vektor satuan dari vektor biasa maka vektor satuan dicetak tebal (untuk tulisan cetak) atau di atas vektor satuan disisipkan tanda ^ (untuk tulisan tangan)
Pada sistem koordinat kartesius (xyz) kita menggunakan vektor satuan i untuk menunjukkan arah sumbu x positif, vektor satuan j untuk menunjukkan arah sumbu y positif, vektor satuan k untuk menunjukkan arah sumbu y positif.
Untuk memudahkan pemahaman dirimu, perhatikan contoh berikut ini. Misalnya terdapat sebuah vektor F sebagaimana tampak pada gambar di bawah.
Pada gambar di atas, tampak bahwa vektor satuan i menunjukkan arah sumbu x positif dan vektor satuan j menunjukkan arah sumbu y positif. Kita dapat menyatakan hubungan antara vektor komponen dan komponenya masing-masing, sebagai berikut :
Fx = Fxi
Fy = Fyj
Kita dapat menulis vektor F dalam komponen-komponennya sebagai berikut :
F = Fxi + Fyj
Misalnya terdapat dua vektor, A dan B pada sistem koordinat xy, di mana kedua vektor ini dinyatakan dalam komponen-komponennya, sebagaimana tampak di bawah :
A = Axi + Ayj
B = Bxi + Byj
Bagaimana jika A dan B dijumlahkan ? gampang…
R = A + B
R = (Axi + Ayj) + (Bxi + Byj)
R = (Ax + Bx)i + (Ay + By)j
R = Rxi + Ryj
Apabila tidak semua vektor berada pada bidang xy maka kita bisa menambahkan vektor satuan k, yang menunjukkan arah sumbu z positif.
A = Axi + Ayj + Azk
B = Bxi + Byj + Bzk
Jika vektor A dan B dijumlahkan maka akan diperoleh hasil sebagai berikut :
R = A + B
R = (Axi + Ayj + Azk) + (Bxi + Byj + Bzk)
R = (Ax + Bx)i + (Ay + By)j + (Az + Bz)k
R = Rxi + Ryj + Rzk
Dibaca perlahan-lahan. Jika belum dipahami, diulangi lagi…….
Perkalian titik menggunakan komponen vektor satuan
Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).
Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.
Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :
i . i = j . j = k . k = (1)(1) cos 0 = 1
i . j = i . k = j . k = (1)(1) cos 90o = 0
Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.
A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +
Ayj . Bxi + Ayj . Byj + Ayj . Bzk +
Azk . Bxi + Azk . Byj + Azk . Bzk
A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +
AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +
AzBx (k . i) + AzBy (k . j) + AzBz (k . k)
Bahasa apa’an neh… dipahami perlahan-lahan ya….
Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :
A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +
AyBx (0) + AyBy (1) + AyBz (0) +
AzBx (0) + AzBy (0) + AzBz (1)
A . B = AxBx (1) + 0 + 0 +
0 + AyBy (1) + 0 +
0 + 0 + AzBz (1)
A . B = AxBx + AyBy + AzBz
Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.
Gampang khaen ? dipahami perlahan-lahan… ntar juga ngerti kok… kaya belajar naek sepeda agar dirimu semakin memahami bahasa alien di atas, mari kita kerjakan latihan soal di bawah ini
Contoh Soal 1 :
Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Sudut yang terbentuk adalah 90o. Hitunglah perkalian titik kedua vektor tersebut…
Panduan jawaban :
Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.
Ax = (5) cos 0o = (5) (1) = 5
Ay = (5) sin 0o = (5) (0) = 0
Az = 0
Bx = (4) cos 90o = (4) (0) = 0
By = (4) sin 90o = (4) (1) = 1
Bz = 0
Vektor A hanya mempunyai komponen vektor pada sumbu x dan vektor B hanya mempunyai komponen vektor pada sumbu y. Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.
Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :
A . B = Ax Bx + AyBy + AzBz
A . B = (5) (0) + (0) (1) + 0
A . B = 0 + 0 + 0
A . B = 0
Masa sich hasilnya nol ?
Coba kita bandingkan dengan cara pertama
A.B = AB cos teta
A.B = (4)(5) cos 90
A.B = (4) (5) (0)
A.B = 0
Hasilnya sama to ? he2… guampang banget…
Contoh Soal 2 :
Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Hitunglah perkalian titik kedua vektor tersebut, jika sudut yang terbentuk adalah 30o
Panduan jawaban :
Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.
Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.
Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :
Coba kita bandingkan dengan cara pertama.
Hasilnya sama to ? mudahkan...
Perkalian silang menggunakan komponen vektor satuan
Kita dapat menghitung perkalian silang secara langsung jika kita mengetahui komponen vektor yang diketahui. Urutannya sama dengan perkalian titik.
Pertama-tama, kita lakukan perkalian antara vektor-vektor satuan i, j dan k. Hasil perkalian vektor antara vektor satuan yang sama adalah nol.
i x i = j x j = k x k = 0
Dengan berpedoman pada persamaan perkalian vektor yang telah diturunkan sebelumnya (A x B = AB sin teta) dan sifat anti komutatif dari perkalian vektor (A x B = – B x A), maka kita peroleh :
i x j = -j x i = k
j x k = -k x j = i
k x i = -i x k = j
Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.
A x B = (Axi + Ayj + Azk) x (Bxi + Byj + Bzk)
A x B = Axi x Bxi + Axi x Byj + Axi x Bzk +
Ayj x Bxi + Ayj x Byj + Ayj x Bzk +
Azk x Bxi + Azk x Byj + Azk x Bzk
A x B = AxBx (i x i) + AxBy (i x j) + Ax Bz (i x k) +
AyBx (j x i) + AyBy (j x j) + AyBz (j x k) +
AzBx (k x i) + AzBy (k x j) + AzBz (k x k)
Karena i x i = j x j = k x k = 0 dan i x j = -j x i = k, j x k = -k x j = i, k x i = -i x k = j, maka :
A x B = AxBx (0) + AxBy (k) + Ax Bz (-j) +
AyBx (-k) + AyBy (0) + AyBz (i) +
AzBx (j) + AzBy (-i) + AzBz (0)
A x B = AxBy (k) + Ax Bz (-j) +
AyBx (-k) + AyBz (i) +
AzBx (j) + AzBy (-i)
A x B = AxBy (k) + Ax Bz (-j) + AyBx (-k) + AyBz (i) + AzBx (j) + AzBy (-i)
A x B = (AyBz - AzBy)i + (AzBx - Ax Bz)j + (AxBy - AyBx )k
Pahami perlahan-lahan….
Jika C = A x B maka komponen-komponen dari C adalah sebagai berikut :
Cx = AyBz - AzBy
Cy = AzBx - Ax Bz
Cz = AxBy - AyBx
Referensi :
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Kanginan, Marthen, 2000, Fisika 2000, SMU kelas 1, Caturwulan 2, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga