Hubungan Antar Himpunan
07.33
Diposting oleh Melany Christy
- Himpunan bagian notasi : Ì atau É
Himpunan A adalah himupnan bagian dari himpunan B, jika setiap anggota A adalah anggota B.
Ditulis : A Ì Bf atau B É A
contoh:
A={a,b}; B={a,b,c}; C={a,b,c,d}
maka A Ì B ; A Ì C ; B Ì C
ketentuan :
- himpunan kosong merupakan himpunan bagian dari sembarang
- himpunan ( f Ì A )himpunan A adalah himpunan bagian dari
- himpunan A sendiri ( A Ì A)jika anggota himpunan A ada sebanyak n, maka banyaknya himpunan bagian dari A adalah HB = 2n
HB = 2n
contoh:
jika A = {a,b,c}
maka himpunan bagian dari A adalah :
{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} dan f
seluruhnya ada 2³ = 8
POWER SET 2s
himpunan yang elemennya adalah himpunan-himpunan bagian dari S
contoh:
S = {a,b,c}
2s = { {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}, f }
- Himpunan sama ttttttttttt notasi : =
Dua himpunan A dan B adalah sama, jika setiap elemen A adalah elemen B, dan setiap elemen B adalah elemen A.
Ditulis A = B
contoh:
K = {x | x²-3x+2=0}
L = {2,1}
maka K = L
- Himpunan lepas ttttttttttt notasi : //
Dua himpunan A dan B disebut saling lepas, jika himpunan A tidak mempunyai anggota persekutuan dengan himpunan B.
Ditulis A // B
contoh:
A = {a,b,c}
B = {k,l,m}
Maka A // B
Other Article
matematika
- Integral Tertentu
- Integral Tak Tentu
- Penggunaan Differensial
- Differensial
- Limit Fungsi Trigonometri
- Limit
- Rumus-Rumus Trigonometri
- Trigonometri
- Komposisi Transfromasi dan Transformasi Invers
- Menyelesaikan Sistem Persamaan Linear
- Transformasi Geometri
- Matriks Satuan dan Matriks Invers
- Determinan Matriks
- Perkalian Dua Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Operasi Matriks
- Matriks
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Permutasi
- Kombinasi
Matematika kelas 1
- Fungsi
- Relasi
- Jenis-Jenis Pertidaksamaan
- Cara Menentukan Penyelesaian Beberapa Garis Bilangan
- Garis Bilangan
- Sifat-Sifat pertidaksamaan
- Bentuk-Bentuk Simetris Akar-Akar Persamaan Kuadrat
- Perluasan Untuk Akar-Akar Nyata
- Sifat-Sifat Akar Persamaan Kuadrat
- Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan
- Menyelesaikan Persamaan Kuadrat
- Skema Bilangan
- Operasi Pada Himpunan
- Istilah-Istilah
- Cara Menyatakan Himpunan
This entry was posted on October 4, 2009 at 12:14 pm, and is filed under
Keanekaragaman Hayati,
matematika,
Matematika kelas 1,
sma kelas 1
. Follow any responses to this post through RSS. You can leave a response, or trackback from your own site.
Langganan:
Posting Komentar (Atom)
Posting Komentar