Perluasan Untuk Akar-Akar Nyata
08.17
Diposting oleh Melany Christy
1. Kedua akar nyata berlawanan
Maksudnya : X1 = -X2
syarat : D > 0
X1 + X2 = 0 ® b = 0
Ket: X1 + X2 = 0 ® -b/a = 0 ® b = 0
2. Kedua akar nyata berkebalikan
Maksudnya : X1 = 1/X2
syarat : D ³ 0
X1 . X2 = 1 ® a = c
Ket: X1 . X2 = 1 ® c/a = 1 ® a = c
3. Kedua akar nyata positif
Maksudnya : X1 > 0 ; X2 > 0
syarat : D ³ 0
X1 + X2 > 0
X1 . X2 > 0
4. Kedua akar nyata negatif
maksudnya : X1 < 0 ; X2 < 0
syarat: D ³ 0
X1 + X2 < 0
X1 . X2 > 0
5. Kedua akar nyata berlainan tanda
Maksudnya : X1 > 0 ; X2 < 0
syarat : D > 0
X1 . X2 < 0
Ket: bentuk X1 + X2 bukan merupakan syarat karena hasil dari X1 + X2 tandanya tidak pasti
6. Kedua akar rasional
Maksudnya : X1 dan X2 bukan berbentuk Ö
syarat : D = bentuk kuadrat
D = (0,1,4,9,16,25...)
Ket: D= bentuk kuadrat akan menghilangkan tanda Ö , sehingga X1 dan X2 rasional
Other Article
- Fungsi
- Relasi
- Jenis-Jenis Pertidaksamaan
- Cara Menentukan Penyelesaian Beberapa Garis Bilangan
- Garis Bilangan
- Sifat-Sifat pertidaksamaan
- Bentuk-Bentuk Simetris Akar-Akar Persamaan Kuadrat
- Sifat-Sifat Akar Persamaan Kuadrat
- Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan
- Menyelesaikan Persamaan Kuadrat
- Skema Bilangan
- Operasi Pada Himpunan
- Hubungan Antar Himpunan
- Istilah-Istilah
- Cara Menyatakan Himpunan
- Integral Tertentu
- Integral Tak Tentu
- Penggunaan Differensial
- Differensial
- Limit Fungsi Trigonometri
- Limit
- Rumus-Rumus Trigonometri
- Trigonometri
- Komposisi Transfromasi dan Transformasi Invers
- Menyelesaikan Sistem Persamaan Linear
- Transformasi Geometri
- Matriks Satuan dan Matriks Invers
- Determinan Matriks
- Perkalian Dua Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Operasi Matriks
- Matriks
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Permutasi
- Kombinasi
Posting Komentar